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ABSTRACT

This paper describes the presence of platinum-group minerals in the Vasarakangas chromitite from the 1.97 Ga Outokumpu ophiolite complex in easte
Finland. The platinum-group mineral assemblages as well as the compositions of laurite, irarsite and orarsite, and also the chondrite-normalized platinur
group element patterns are compatible with those described in younger Mesozoic ophiolitic chromitites. In contrast to these younger chromitites, where |
group minerals occur mainly as inclusions in chromite, the platinum-group minerals at Vasarakangas are principally found as enclosed minor grains in euh
dral matrix gersdorffites. The PGE distribution between separated chromite and gersdorffite fractions is in accordance with the observed exceptional mode
PGM occurrence.

INTRODUCTION from the tailings of the closed Vasarakangas talc quarry.
Despite the intense penetrative deformation of the host
In ophiolitic chromitites and also in mafic layered intru- rocks, the chromitite samples display typical structures of
sions, platinum group minerals (PGM) such as laurite ophiolitic chromitites, such as massive and nodular-like tex-
(Ru,0s,InS, irarsite (Ir,RU)AsS, and osarsite (Os, Ru)AsS tures. The nodular-like chromitite comprises subrounded,
are principally found as inclusions within chromite grains coarse grains while the massive type is dissected by sets of
(e.0., Augé, 1985; 1986; Legendre and Augé, 1986; Stock{fractures. The chromite grains vary in shape from euhedral
man and Hlava, 1984; McElduff and Stumpfl, 1990). In to rounded and are up to 40 mm in size, though the largest
some cases, these minerals can also occur in the silicate mgrains are commonly cataclastic. The grains are very fresh
trix, but most commonly, the matrix platinum-group miner- and have retained their primary chemical composition. Only
als are represented by arsenides, sulfarsenides, antimonidesrrow rims of opaque ferritchromite have developed at the
and alloys of Rh, Pt and Pd, and are accompanied by basmargins of the chromites and along the cross-cutting frac-
metal sulfides and nickel arsenides (Prichard and Tarkiantures. Both the Cr/(Cr+Al) and Mg/(Mg+F#¢ values of the
1988; Thalhammer et al., 1990; Mondal and Baidya, 1997).chromites range from 0.55 to 0.63 (Vuollo et al., 1995; Li-
This paper describes an exceptional mode of occurrence afo et al., 1995).
platinum-group minerals in a chromitite from the 1.97 Ga In contrast to chromite, primary silicate minerals are not
Outokumpu ophiolite complex. preserved in the chromitite. The fracture network and inter-
stitial silicate matrix are composed of Cr-chlorite and mag-
nesite. Accessory nickeline (NiAs) and compositionally het-
GEOLOGICAL SETTING erogeneous gersdorffite (NiAsS) occur predominantly in sec-
ondary silicates as anhedral to euhedral grains from 2 to 100
The Paleoproterozoic Outokumpu ophiolite complex pm in size and are only occasionally found in the fer-
with an age of 19718 Ma (Huhma, 1986), is located in ritchromite rims as small, anhedral inclusions less than 10
eastern Finland. The ophiolite consists of dismembered ul{um in diameter. Small grains of Os-poor laurite, isarsite and
tramafic serpentinite and soapstone massifs that vary greatlpsarsite occur commonly as inclusions in matrix gersdorffite.
in size and shape, and occurs in a zone that can be traced f@ne exceptionally large (1Q0m) laurite grain was discov-
a distance of some 260 km. The largest massifs have a lorered outside gersdorffite in matrix chlorite (Figs. 2 and 3).
gitudinal axis of several kilometers and reach a thickness of
a few hundred meters, whereas the smallest ones are only a
few tens of meters long (Fig. 1). ANALYTICAL METHODS
The ultramafic massifs of the Outokumpu ophiolite com-
plex represent a deep section in an ancient oceanic crust and Polished sections and resin mounts of different fractions
upper mantle. The mantle rocks were originally dunites andof chromitite were systematically studied under reflected
harzburgites, and the cumulates from the oceanic crust werdght and with a JEOL JXCA 733 electron microprobe
dunites, wehrlites and |herzolites (Liipo et al., 1995). The equipped with a LINK AN 10000 at the Institute of Electron
massive Cu-Zn-Co sulphide ores of the complex are hostedptics, University of Oulu. The acceleration voltage was 20
by quartz- and calc-silicate rocks closely associated withkV, the sample current 15 nA, and the spot size used was
ophiolitic serpentinites (e.g., Gaal and Parkkinen, 1993).  between 2 and 10m depending on the size of the analyzed
grain. Pure metals and synthetic sulfides were used as stan-
dards. Both, the wave length-dispersion (WDS) and energy-
PETROGRAPHY AND MINERALOGY dispersion (EDS) methods were used. Results were correct-
OF THE CHROMITITE ed with an on-line ZAF program. The small size of the PGM
grains and their occurrence as inclusions in gersdorffite
All the samples examined in this study were collected grains explain the low analytical totals in some cases, as
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Fig. 1 - Geologic sketch
map of the Outokumpu
ophiolite complex, show-
ing location of the
chromitite occurrence at
Vasarakangas. Legend: 1-
Kalevian mica schists; 2-
Jatulian and Sariolian
quartzites; 3- Ophiolite
assemblage; 4- Archean
basement. Modified after
Liipo et al. (1995).

Fig. 2 - a) Occurrence of euhedral gersdorffite (grs) intersticially and in the fractures of chromite (chr), scale joar; bp@@currence of laurite (lau) as an

inclusion in gersdorffite, scale bar futn.
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Fig. 3 - a) Laurite (lau) inclusion in gersdorffite (grs) - nickeline (nic) grain, scale han1B) irarsite (irar) inclusions in gersdorffite, scale bapt0

well as the additional contents of Ni, Co and Fe, whicha [,
parently came from the gersdorffite hosts.
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During the Os isotopic study of the Vasarakang: s N
chromitite (Walker et al., 1996), selected chromitite sampl * “r
were crushed and chromite was separated using heavy e

uids and purified magnetically. Magnetic separation yieldt
gersdorffite and nickeline (GN) fractions as by-products. 1
confirm the mode of PGM occurrence, two GN fraction
and one chromite fraction were analyzed for PGE and Au
the Geological Survey of Finland by using an inductivel
coupled mass spectrometer (ICP-MS) and nickel fire ass
preconcentration (Juvonen et al., 1994).
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The results of PGE analyses of chromite and GN frac- Fig. 4 - Chondrite-normalized plots of PGE and gold for a) chromitite and
tions together with the bulk analyses of chromitite are pre- 9érsdorfiite fractions and b) bulk PGE and gold (Vuolio et al. 1995). In
: Fig. 2a chr denotes to chromitite, grs to gersdorffite fraction and b to bulk
sented in Table 1. The average bulk PGE grades are 60 PEsample.
Os, 36 ppb Ir, 108 ppb Ru, 10 ppb Rh, 7.2 ppb Pt, 2.4 ppt
Pd and 8 ppb Au (Vuollo et al., 1995), while in the GN and concentrations are controlled mainly by the PGM inclusions
pure chromite fractions the concentrations of PGE are severwithin the matrix gersdorffites. The bulk assay is compara-
al orders of magnitude higher and lower, respectively. ble to those reported earlier by Vuollo et al. (1995).
The PGE assays of the GN and chromite fractions dis-
play (Fig. 4) a classic chondrite-normalized PGE pattern
with a steep, negative slope, typical for podiform chromi- PLATINUM-GROUP MINERALS AND GOLD
tites in ophiolites (e.g., Page et al., 1982). The high PGE
guantities in the GN fractions indicate that the bulk PGE Nine laurite, one osarsite and four irarsite grains have
been found and identified in this investigation from 17 thin
Table 1 - GE and gold contents in chromitite. Minimun and sections and resin mounts (Table 2, Figs. 2 and 3). Within
maximum PGE values are based on PGE analyses of six (6yersdorffite, irarsite, osarsite and laurite occur mostly as

chromitite samples (Vuollo et al. 1995). subhedral to anhedral inclusions with a maximum dimen-
sion of only 10um. However, one exceptionally large Os-

Sample POL.15 POL.Is _POLS POLS rich laurite grain with a diameter of 1p@n was discovered.

Fraction Chr Grs Bulk Grs  Bulk min. Bulk max. Native gold was enpountered as rare sub_hedral inclusions

ppb within nickeline, but in contrast to gersdorffite, no PGM has

Os 24.8 712.0 118.0  6690.0 29.0 118.0 been discovered in nickeline.

fr 140 4150 740 4680.0 200 740 Individual grains of laurite are rather homogeneous but

Ru 26.0 1060.0 125.0 14600.0 84.0 125.0 id bl iati ists bet di te | it .

Rh 20 760 00 11400 <0 110 considerable variation exists between discrete laurite grains.

Pt 14 104 80 7380 6.0 27.0 The composition of laurite ranges from (Rur, ;J)s, S, to

Pd 3.0 16.6 20 3380 2.0 5.0 (RUy 640, 44" 0.0951.08 (ASp 0251 97 5o LAUIItE Is also marked

Au 27 13.9 5.0 13800 5.0 14.0 by a significant enrichment in Os (up to 39.06 wt%), most

Total PGE 7 2290 336 28186 prominent in the largest 10@m matrix grain, whereas the

Os content in the smallest grains entrapped in gersdorffite is
clearly lower, ranging from 23.5 wt% Os to below the de-
Chr = chromite fraction, Grs = gersdorffite fraction tection limit. As the Os content of laurite decreases, the Ir
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content increases and reaches 13.35 wt%. Walker et al. At Vasarakangas, the modification of PGMs and the gen-
(1996) analyzed large matrix laurite for Re-Os isotopes andesis of the gersdorffite-nickeline assemblage are related to
obtained a near chondritic initigl_ value of -1.6. the polyphase steatitization processes post-dating the re-
Irarsite varying in composition from gional amphibolite-facies metamorphism which took place
(It g 9oR Uy 0eNi g 1051 07AS0 9151 02 10 (ITg . RUy NI 1250 o7 at about 658 and 3.5+ 1 kbar (Treloar et al. 1981; Kuro-
As, oS, o, 0ccurs as anhedral to subhedral inclusions innen, 1995). The P-T conditions of late hydrothermal alter-
gersdorffite. Only one anhedral osarsite grain with a compo-ation are poorly constrained due to the lack of well-calibrat-
sition of (Og o, RU; 17)51 09ASy 955 93 Nas been found en- ed geothermobarometers. According to the calibration of
closed in gersdorffite. Kranidiotis and Maclean (1987), the chemical composition
Small amounts of PGE were also detected from gersdorf-of chlorite yielded a temperature range of 226 -°G36vith
fite, at maximum 1.2 wt% Ru and 4.6 wt% Os. Either thesean average value of about 3®D. In the CoAsS-NiAsS-Fe-
values originate from minor invisible PGM grains or PGE AsS system (Klemm, 1965), gersdorffite analyses plot in the
occur as a solid solution in gersdorffite as suggested bylow temperature region (T < 30).
Leblanc et al. (1990).
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