
introduction

At a large scale, Anatolia can be subdivided into four
main continental zones (from N to S) (see Fig. 1): 1)
Rhodope Pontide Terranes (IZT in Fig. 1), 2) Sakarya Com-
posite Terrane (SCT in Fig. 1), 3) Anatolides and Taurides
(= Tauride-Anatolide Platform; ATB in Fig. 1) and 4) the
SE Anatolian Autochthon. Between the Sakarya Terrane
and the Anatolides (Kutahya-Bolkardag belt in the Western
and Kirșehir Massif in the Central Turkey), an ophiolitic su-
ture occurs, known as the Izmir-Ankara-Erzincan Suture
Belt (IAESB), evidence of the presence of an ancient ocean
basin: the Izmir-Ankara section of the Eastern Mesozoic
Tethys Ocean (see Sengör and Yilmaz, 1981; Dercourt et
al., 1986; Robertson et al., 1996; Dilek et al., 1999;
Göncüoglu et al., 1997, 2000; 2006; 2010; Stampfli and
Borel, 2002; Bortolotti and Principi, 2005; Schmid et al.,
2008; Moix et al., 2008).

This ocean basin has been correlated with the Vardar
Ocean of the Dinarides-Hellenides (see Sengör and Yilmaz
1981; Robertson, 2002; 2004; Okay et al., 2006). Remnants
of this ocean rode onto the northern continental margin of
the Anatolide Platform. They consist of: a) an accretionary
prism (the “Ankara Mélange” of Bailey and McCallien,
1953, sensu lato) where both ophiolite and blueschist blocks
coexist, b) south-verging tectonic slices or giant slide blocks

of ophiolites (see Göncüoglu et al., 2000; Göncüoglu, 2011;
Floyd et al., 2000), and c) imbricated slices of succession
representative of a foredeep basin, where slide blocks of a)
and b) were deposited. The ophiolitic slide blocks mainly
consist of peridotites (harzburgites) and also gabbros, sheet-
ed dykes, basalts and pelagic sediments (see Önen, 2003)
with predominant SSZ and, subordinately, MORB and OIB
affinities (see Robertson, 2000; Floyd et al., 2000,
Göncüoglu et al., 2010; Parlak et al., 2012).

The detailed multidisciplinary knowledge of these ocean-
derived rocks, including their regional geology, petrology,
geochemistry, stratigraphy and radiolarian biostratigraphy,
allows the reconstruction of the geodynamic history of the
ocean from birth, to spreading phase and closure with ob-
duction of part of its lithosphere onto the continental margin
of the Anatolide Platform.

This paper intends to contribute to this complex history
through the study, in the Eastern Ankara Mélange (part of
the Izmir-Ankara Mélange) of the radiolarian assemblages
(and hence of the ages) of the cherts deposited on top of the
ophiolitic basalts of which both the petrography and geo-
chemistry made clear the environment of formation.

The fist data on the age of the sediments at the top of the
basalts (Middle-Late Jurassic - Aptian-Cenomanian) of this
area were presented 50 years ago (Boccaletti et al., 1966
and Bortolotti and Sagri, 1968), but no data on the petrology
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ABSTRACT

In this paper, we present the preliminary data on the age of the radiolarian cherts deposited on top of basalts belonging to the Eastern Ankara Mélange
(part of the Izmir-Ankara Mélange). Petrological studies on the basalts were carried out in order to constrain the tectonic setting of the studied basalt-chert
sequences. Nine sections were sampled East and Northeast of Ankara and twenty seven samples were collected for biostratigraphic and geochemical analyses.

The oldest radiolarian cherts dated in the present paper are referable to the Late Triassic (Section 6: late Norian) and are associated with basaltic rocks of
OIB character. OIB type volcanic rocks are also found in other sections, associated with cherts of Late Jurassic (Section 3: middle-late Oxfordian to late Kim-
meridgian-early Tithonian) and Early Cretaceous (Section 1: late Valanginian to late Hauterivian) ages. 

E-MORB type rocks are associated with radiolarian cherts of Cretaceous age (Section 4: middle late Barremian-early early Aptian and Section 7:
Valanginian to middle Aptian-early Albian), whereas the oldest N-MORBs were found in a section of Late Jurassic age (Section 5: early-early late Tithonian).
Other N-MORBs are associated with radiolarian cherts of Early Cretaceous age (Section 8: late Valanginian-early Barremian). P-MORBs type rocks were
found only in a section of Middle Jurassic age (Section 2: early-middle Bajocian to late Bathonian-early Callovian age).

In this work, we document the occurrence of Late Triassic OIB-type rocks and of rocks showing different geochemical affinities (N-, E-, P-MORBs and
OIB) generated within the same time span (Middle-Late Jurassic - Early Cretaceous). N-MORBs are compatible with composition of melts generated by par-
tial melting of a depleted MORB mantle source. In contrast, OIBs are compatible with partial melting of an enriched-type mantle source. E-MORBs may have
derived from mantle source slightly enriched with respect to a DMM source, whereas P-MORBs are compatible with melts generated from a mantle source
significantly enriched, compared to DMM. 
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and geochemistry of the volcanics were provided. After-
wards,  only limited age data were obtained, using multidis-
ciplinary approach (Rojay et al., 2001). As a consequence,
ages from Middle Triassic to Cretaceous for the radiolarian
cherts at the top of the basalts and very different environ-
ments for the genesis of the volcanics were found: mid-
ocean ridge, seamount, supra-subduction zone, and back
arc (e.g., Bragin and Tekin., 1996, Göncüoglu et al., 2001;
2008; 2010; Rojay et al., 2001; Tekin et al., 2002; Gökten
and Floyd, 2007; Tekin and Göncüoglu, 2007; 2009; Yalin-
iz et al., 2000a).

geologicAl bAckground 

The sampled ophiolitic outcrops of the Izmir-Ankara-
Erzincan Suture Belt (IAESB) are located east of Ankara,
(Fig. 1), where the concave shaped E-W trend of the belt be-
tween Izmir and Ankara makes a sudden loop and turns to-
wards NNW, due to the Tertiary indentation (e.g., Cemen et
al, 1993; Kaymakci et al., 2003) and anticlockwise rotation
of the Kirșehir Massif. 

The pre-Eocene evolution of this part of the IAESB was
characterized by formation of a huge accretionary prism (for
details see Rojay, 2013) between the northerly Sakarya
Composite Terrane and the southerly Kütahya-Bolkardag
Belt of the Anatolides, in the western part, and the Central
Anatolian Crystalline Complex (CACC, Kirșehir Massif), in
the eastern part. The initial juxtaposition of these oceanic
and continental units is dated to the latest Cretaceous-Pale-
ocene, however, compression and related thrusting lasted to
the Miocene (Kocyigit et al., 1995).

The Sakaria Composite Terrane represents the active
margin of the Izmir-Ankara Ocean, and was thrust over the
IAESB both to the NNE of Ankara and to the SE of Çorum
(Figs. 1, 2). It is a composite terrane comprising a Variscan
arc complex and its Permian platform, as well as the Pale-
otethyan subduction-accretion prism (the Triassic Karakaya
Complex, Göncüoglu et al., 2000; Okay and Göncüoglu,
2004). Its Jurassic to ?Late Cretaceous cover belonged to a

north-facing passive continental margin that was trans-
formed into an active margin by the northward subduction
of the Izmir-Ankara oceanic lithosphere.

To the NNW of Ankara, the low-grade metamorphic
greywackes of the Karakaya Complex are associated with
Permian and Carboniferous limestone blocks and ocean is-
land-type volcanic rocks with Carnian radiolarian cherts
(e.g., Sayit et al., 2011). The unconformably overlying
Mesozoic cover comprises from bottom to top: late Early
Mid Jurassic neritic limestones, Late Jurassic - Early Creta-
ceous (e.g., Altiner et al., 1991) pelagic limestones and Late
Cretaceous turbidites. The oldest common overstep se-
quence on the Izmir-Ankara-Erzincan Suture Belt (and the
Sakarya Composite Terrane) is represented by Late Pale-
ocene lagoonal sediments, which occur as discontinuous
outcrops within the thrust zone between these two units
(Göncüoglu et al., 2000). 

In the northern-central part of the sampled area, the
Sakarya Composite Terrane is represented by Late Jurassic
- Early Cretaceous pelagic limestones (Sogukcam Lime-
stone) that were thrust over the ophiolitic mélanges of the
IAESB (Fig. 2). In this area, the Sakarya Composite Ter-
rane is bounded by the branches of the right-lateral North
Anatolian Transform Fault and occurs as E-W trending
tectonic inlayers. East of the sampled area, to the SE of
Çorum (Fig. 2), the metamorphic rocks of the Sakarya
Composite Terrane (also known as Tokat Massif, Yilmaz
et al., 1997) are tectonically overlying the ophiolitic
mélange of the IAESB. In this area, Middle Eocene rocks
are in turn unconformably overlying both units. However,
the primary relations between the Sakarya and IAESB
rocks are obscured by the intensive Oligocene strike-slip
faulting.

The continental crust palinspastically located to the south
and structurally lying below the IAESB units to the west of
Ankara represents the northern edge of the Tauride-Ana-
tolide Platform. It mainly consists of high pressure-low tem-
perature metamorphosed tectonic slices (e.g., Okay and
Tüysüz, 1999) with lithostratigraphic sequences resembling
the Paleozoic-Mesozoic slope-type successions of the Ana-

Fig. 1 - Main tectonic zones of Turkey (from
Sengör and Yılmaz, 1981; Okay and Tüysüz,
1999; Göncüoğlu et al., 2012, modified).
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tolides (Göncüoglu, 2011). In the sampled area (Fig. 2), the
IAESB units are thrust onto the Central Anatolian Crys-
talline Complex (Yaliniz et al., 1996; 2000b), which is made
of high temperature-medium pressure metamorphic succes-
sions resembling the Paleozoic-Mesozoic platform of the
Tauride-Anatolide Platform. They were overthrust by Turon-
ian supra-subduction type ophiolites, known as the Central
Anatolian Ophiolites (Yaliniz et al., 2000a), which derived
from the Izmir-Ankara Ocean. The basement rocks and the
overlying ophiolite units were intruded by late Campanian
granitoids (Köksal and Göncüoglu, 2008), indicating a Late
Cretaceous initial obduction age. The oldest overstep se-
quences in this area are again post-Maastrichtian pre-Early
Eocene (Gülyüz et al., 2012) red conglomerates, indicating a
Paleocene age for the main juxtaposition of the CACC and
IAESB mélange.

The IAESB rocks in the central part of the sampled area
are covered by the Tertiary rocks of the Çankırı Basin,
which include the Paleocene-Eocene post-orogenic marine
clastic-volcanoclastics and carbonates, together with
basaltic-andesitic volcanic rocks. On the other hand, the
Neogene (Tortonian-Messinian) sediments cover the central
part of the Çankırı Basin (e.g., Göncüoglu, 1992). 

No geophysical data are available to interpret the thick-
ness of the IAESB rocks that comprise the subducted and
accreted remnants of the Izmir-Ankara oceanic lithosphere,
together with island arc rocks and sedimentary rocks of a
number of Late Cretaceous-Paleocene piggy-back basins
(e.g., Cater et al., 1991; Erdogan et al., 1996).

the sAmpled sections

The basaltic rocks and associated radiolarian cherts
analysed in this paper come from the Izmir-Ankara Mélange.
They were sampled from nine sections along the margins of
the Çankırı Basin (Fig. 2) and described as follows. 

Section 1

A metric intercalation of radiolarian cherts and siliceous
shales in a massif of pillow basalts (with sheared contacts),
road Elmadag - Kırıkkale (N 39°55.023 - E 33°21.989).

Samples: TU10.4, radiolarian chert; TU10.6, TU10.9,
basalts.

Section 2

A metric intercalation of radiolarian cherts in a massif of
pillow basalts, road Sorgun - Çekerek (Fig. 3b, N 39°54.889 -
E 35°18.063). 

Samples: TU10.12, radiolarian chert; TU10.14 - 17,
basalts.

Section 3 

Thin sequences basalts - radiolarian cherts in a block
within the mélange, road Sorgun - Çekerek (near Gökdere)
(N 39°59.924 - E 35°24.272) and (N 39°59.921 - 
E 35°24.274). 

Samples: TU10.28, radiolarian chert; TU10.19, TU10.22
- 23 basalts. 

159

Fig. 2 - Sketch map of the study area (East of Ankara), with the main faults and thrusts and the location of the sampled sections (after 1/500.000 Geological
Map of Turkey, MTA, modified). 
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Section 4

Thin sequence basalts - radiolarian cherts with a sheared
contact, 3 km from Boğazkale (N 40°00.377 - E 34°38.762).

Samples: TU10.31, chert; TU10.32 - 33, basalts.

Section 5

Overturned sequence radiolarian cherts - basalts in a big
quarry, road Çorum to Alaca (south of Küre, Fig. 3c, N
40°15.861 - E 34°48.187).

Samples: TU10.36, chert; TU10.34, TU10.39 - 40,
basalts.

Section 6

Small lens of cherts, without clear contacts, in a big mass
of basalts, road Çorum - Iskilip (N 40°34.581 - E 34.46.574).

Samples: TU10.42, chert; TU10.44, basalt.

Section 7

Chert nodule in a basalt body, road Iskilip - Tosya (Fig.
3d, N 40°53.378 - E 34°20.756).

Samples: TU10.45, chert; TU10.46, basalt.

Section 8

Large outcrop of ophiolitic breccia with a siliceous ma-
trix, northeast of Yapraklı (N 40°51.097- E 33°50.723).

Samples: TU10.47, chert; TU10.49a - 49b, basalt.

Section 9

Pillow basalts enveloped in reddish limestones, road El-
divan - Sabanozu (N 40°31.488 - E 33°28.106).

Samples: TU10.54 - 55, limestones; TU10.52 - 53,
basalts.

rAdiolAriAn biostrAtigrAphy

The radiolarian cherts were etched with hydrochloric and
hydrofluoric acid at different concentrations following the
method proposed by Dumitrica (1970), Pessagno and New-
port (1972), Baumgartner et al. (1981), De Wever (1982).
The samples yielded radiolarians with moderate preservation;
the principal radiolarian markers are reported in Plate 1.

For taxonomy and ranges of the Late Triassic radiolarian
markers we mainly refer to Carter (1993), Sugiyama (1997),
Tekin (1999; 2002), Bragin (2007); for the taxonomy and
ranges of the Late Jurassic-Early Cretaceous principal mark-
ers we refer to O’Dogherty (1994), Baumgartner et al.
(1995a; 1995b), Dumitrica and Dumitrica-Jud (1995), Bak
(1996; 1999), Dumitrica et al. (1997), Chiari et al. (2007),
O’Dogherty et al. (2009a; 2009b), Robin et al. (2010), Ban-
dini et al. (2011).

From the analyzed radiolarian cherts the following ages
were obtained: 
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Fig. 3 - a) Serpentinite mélange near Beynam; b) Pillow basalts along the road from Sorgun to Çekerek (Section 2); c) Overturned sequence of basalts and ra-
diolarian cherts along the road from Çorum to Alaca (Section 5); d) Outcrop of basalts and radiolarian cherts along the road from Iskilip to Tosya (Section 7).
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Section 1

TU10.4: late Valanginian to late Hauterivian (UAZ. 17-
20; UAZones after Baumgartner et al., 1995b) for the pres-
ence of Aurisaturnalis variabilis variabilis (Squinabol) with
Hemicryptocapsa capita Tan (Plate 1: 8 and 14). 

Section 2

TU10.12: early-middle Bajocian to late Bathonian-early
Callovian (UAZ. 3-7; UAZones after Baumgartner et al.,
1995b) for the presence of Stichomitra (?) takanoensis Aita
(Plate 1: 20). 

Section 3

TU10.28: middle-late Oxfordian to late Kimmeridgian-
early Tithonian (UAZ. 9-11; UAZones after Baumgartner et
al., 1995b) for the occurrence of Podocapsa amphitreptera
Foreman with Fultacapsa sphaerica (Ozvoldova) (Plate 1:
17 and 13). 

Section 4 

TU10.31: middle late Barremian-early early Aptian for
the occurrence of Aurisaturnalis carinatus perforatus Du-
mitrica and Dumitrica Jud (range after Dumitrica and Du-
mitrica-Jud, 1995) (Plate 1: 7).

Section 5 

TU10.36: early-early late Tithonian (UAZ. 12; UAZone
after Baumgartner et al., 1995b) for the occurrence of Cin-
guloturris cylindra Kemkin and Rudenko, Eucyrtidiellum
pyramis (Aita), Ristola cretacea (Baumgartner) with Loopus
primitivus (Matsuoka and Yao) (Plate 1: 10, 12, 19 and 16).

Section 6

TU10.42: late Norian (Betraccium deweveri Zone; Zone
after Carter, 1993) for the presence of Betraccium deweveri
Pessagno and Blome and Tetraporobrachia sp. A sensu
Carter (1993) (Plate 1: 2 and 5).

Section 7

TU10.45: Valanginian to middle Aptian-early Albian
(Valanginian to Costata subzone of Turbocapsula Zone;
Zone after O’Dogherty, 1994) for the presence of Cryptam-
phorella clivosa (Aliev) with Praeconosphaera sphaero-
conus (Rüst) (Plate 1: 11 and 18).

Section 8

TU10.47: late Valanginian-early Barremian (UAZ. 17-
21; UAZones after Baumgartner et al., 1995b) for the pres-
ence of Cecrops septemporatus (Parona) (Plate 1: 9). 

petrogrAphy, geochemistry 
And tectono-mAgmAtic significAnce 

of the bAsAltic rocks

petrography

All the studied rocks were significantly affected by low-
temperature, ocean-floor alteration, which resulted in the re-
placement of primary minerals, though primary igneous tex-
tures are well preserved. Plagioclase is usually replaced by
either albite or calcite and rarely by clay mineral assem-
blages. Clinopyroxene is pseudomorphosed either by chlo-
rite or actinolitic amphibole. However, in samples TU10.22
and TU10.23 (Section 3) clinopyroxene is replaced by
brown hornblende, though fresh clinopyroxene relics are lo-

cally found. The groundmass secondary phases mainly con-
sist of chlorite, and clay minerals. Regardless of the sec-
ondary mineralogical transformation, the following petro-
graphic description of the various rock-types will be made
on the bases of primary igneous phases. For a better under-
standing, it will be made according to the geochemical
groups described in the Geochemistry section. 

Group 1. Pillow and massive lavas have aphyric, micro-
crystalline sub-ophitic textures in which only small laths of
plagioclase can be recognized. Pillow breccias are generally
monogenetic and show coarse-grained, intergranular texture
with euhedral plagioclase and interstitial clinopyroxene.

Group 2. Massive lavas show both aphyric and por-
phyritic (PI = ~ 40) textures. In both varieties, the ground-
mass texture is hyalopilitic. Phenocrysts are represented by
large crystals of plagioclase. In all the studied rocks the
crystallization order is: plagioclase + clinopyroxene ± Fe-
Ti-oxides.

Groups 3 and 4. Pillow and massive lavas most com-
monly display aphyric, ophitic or sub-ophitic textures with
crystal size ranging from microcrystalline to coarse-grained.
Nonetheless, a few samples display slightly porphyritic tex-
tures with plagioclase microphenocrysts. In addition,
hyalopilitic texture is locally observed. The groundmass
mineral assemblage includes plagioclase, clinopyroxene,
and variable amounts of opaque phases. Pillow breccias are
generally monogenetic and the individual fragments are tex-
turally and compositionally similar to the pillow lavas.
These rocks are characterized by variable abundance of var-
ioles filled by calcite.

Analytical methods

Whole-rock major and some trace element analyses were
obtained by X-ray fluorescence (XRF) on pressed-powder
pellets, using an ARL Advant-XP automated X-ray spec-
trometer. The matrix correction methods proposed by
Lachance and Trail (1966) were applied. Volatile contents
were determined as loss on ignition (L.O.I.) at 1000°C. 

The CO2 content was determined by simple volumetric
technique (Jackson, 1958) only on samples affected by cal-
cite veins and amygdales. This technique was calibrated us-
ing standard amounts of reagent grade CaCO3. In addition,
for the discussion of the geochemical characteristics and for
a better comparison of chemical data, the major element
composition of these samples were recalculated on calcite-
free basis. In detail, CaO content in secondary calcite has
been calculated according to stoikiometric proportions with
CO2 contents, given that the secondary carbonates consist
exclusively of calcite. Major element composition has then
been re-calculated to 100 wt% without considering L.O.I.
and CaO in calcite. 

Accuracy of the data and detection limits for XRF and
CO2 analyses were evaluated using results for international
standard rocks, duplicate runs of several samples, and the
blind standards included in the sample set; results are given
in Table 1. Whole-rock analyses were performed at the
Phisics and Earth Science Dept. of the University of Ferrara
(Dipartimento di Fisica e Scienze della Terra, Università di
Ferrara). The results are shown in Table 1.

geochemistry

The following geochemical description is made mainly
using those elements that are virtually immobile during
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low-temperature alteration and metamorphism (e.g., Pearce
and Norry, 1979). These elements include many incompati-
ble elements, such as: Ti, P, Zr, Y, Sc, Nb, Hf, Th, as well
as some transition metals (e.g., Ni, Co, Cr, V).

Due to the mobilization of most major elements during
alteration and metamorphism, the standard classification
based on SiO2 cannot be used. Therefore, the studied rocks
are classified using diagrams based on immobile incompati-
ble elements (Fig. 4a). Using these discrimination diagrams,
four groups of volcanic rocks can be recognized, as follows.

Group 1 is represented by subalkaline basalts (Fig. 4a)
cropping out in sections 5 and 8. The sub-alkaline nature of
these rocks is clearly testified by very low Nb/Y ratios (Fig.
4a, b). They have rather evolved compositions, characterized
by relatively high contents of incompatible elements such as
TiO2, P2O5, and Y, as well as FeOt, (Table 1, Fig. 5). The low
Mg# also indicate that these basalts do not correspond to pri-
mary magmas in equilibrium with mantle compositions
(Mg# = 0.68-0.75). With respect to their TiO2 and P2O5 con-
tents, these basalts display a tholeiitic character. A limited
evolutionary trend can be observed in the variation diagrams
of Fig. 5. These trends are characterized by significant varia-
tion of FeOt, Y, Ni contents and Mg# with limited Zr (here

assumed as representative of fractionation) and TiO2 con-
tents. Ni and Cr contents are relatively high in samples from
Section 5, whereas they are low in samples from Section 8,
though all samples have comparable Mg#. V content is gen-
erally high (Table 1). In contrast, Nb, La, and Ce contents
are generally low. Group 1 basalts are characterized by N-
MORB (normal mid-ocean ridge basalt) normalized incom-
patible element patterns, which are rather flat from Nb to Y
(Fig. 6a). The overall geochemical features of these rocks, as
well as their incompatible element patterns resemble those of
typical N-MORB (Sun and McDonough, 1989). 

Group 2 is represented by the subalkaline basalts (Fig.
4a) cropping out in Sections 4 and 7. These rocks have a
sub-alkaline nature with low Nb/Y ratios (Fig. 4b) and show
relatively high TiO2, P2O5, and Y contents (Table 1, Fig. 5).
Ni, though variable, is generally low, whereas Cr and V are
rather high. Basalts from Section 4 have low Mg# indicating
that they most likely represent rather evolved magmas. In
contrast, the basalt from Section 7 shows rather high Mg#
and coherently it shows lower TiO2, FeOt, Y, and V com-
pared to basalts from Section 4. Most element concentra-
tions and the evolutionary trend (Fig. 5) of Group 2 rocks
are similar to those of Group 1 basalts. However, as a dis-
tinctive feature, Group 2 basalts display N-MORB-normal-
ized incompatible element contents (Fig. 6b), similar to
those of E-MORBs (enriched-type MORBs). Indeed, they
show patterns smoothly decreasing from Ba to Y. 

Group 3 is represented by alkaline basalts and fer-
robasalts from Section 2, as well as alkaline basalts from
Section 9 (Fig. 4a). These rocks have a transitional nature,
as testified by their high Nb/Y ratios (Fig. 4b). Alkaline
basalts from Section 2 display rather primitive compositions
with relatively high Mg# and high TiO2, P2O5, Zr, Nb, Hf,
and Th contents (Table 1, Fig. 5). In contrast, ferrobasalts
from Section 2 and alkaline basalts from Section 9 have
rather evolved compositions, with relatively low Mg# and
very high TiO2, P2O5, Zr, Nb, Hf, and Th contents (Table 1,
Fig. 5). Accordingly, Ni and Cr contents are generally high
in basalts, whereas they are relatively low in the differentiat-
ed rocks. Except for Mg#, the variations of many elements
with respect to Zr display common evolutionary trends to-
wards high contents of the incompatible elements and FeOt
and low contents of the compatible elements for all Group 3
samples (Fig. 5). These trends are compatible with a mag-
matic evolution by fractional crystallization. Group 3 rocks
show high abundance in LFSE with respect to N-MORB
and display regularly decreasing N-MORB normalized pat-
terns from Rb to Y (Fig. 6c). The less enriched samples
show patterns comparable with those of P-MORB (plume-
type MORB) and the most enriched samples have incompat-
ible element contents similar to those of alkaline basalts
generated at within-plate ocean island settings (OIB).

Group 4 is represented mainly by alkaline basalts and
subordinate trachyandesites from Sections 1, 3, and 6 (Fig.
4a). These rocks have a clear alkaline nature, as testified by
their very high Nb/Y ratios (Fig. 4b). Alkaline basalts from
Sections 3 and 6 mainly display relatively primitive compo-
sitions, whereas alkaline basalts from Section 1 represent
rather evolved compositions. All samples have generally
high contents of TiO2, P2O5, Zr, Nb, Hf, Th and low con-
tents of compatible elements (Table 1, Fig. 5). 

In the variation diagrams, rocks from the different sec-
tions show different evolutionary trends, most likely reflect-
ing the distinct evolution of magmas of different initial
compositions. This is particularly evident in the TiO2, Y,

Fig. 4 - a) Zr/TiO2*10000 vs. Nb/Y (after Winchester and Floyd, 1977)
and b) Ti/Y vs. Nb/Y (after Pearce, 1982) discrimination diagrams for vol-
canic and subvolcanic rocks from the Izmir-Ankara Mélange. 
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and Ni vs. Zr diagrams where different Zr vs. element ratios
further support this conclusion. Nonetheless, the well-de-
fined trends observed for samples from each single section
suggest that each section consists of rocks belonging to a
comagmatic suite. Group 4 rocks show high abundance in
LFSE with respect to N-MORB and display regularly de-
creasing N-MORB normalized patterns from Rb to Y (Fig.
6d). Compared with Group 3 rocks, these basalts show
slightly higher LILE (large ion lithophile elements) concen-
trations. N-MORB normalized patterns are comparable with
those of alkaline basalts generated at within-plate ocean is-
land settings (OIB). 

tectono-magmatic interpretation

One of the main goals of this study is to assess the na-
ture and tectonic significance of the magmatic events that
occurred in the Turkish sector of the Tethys. According to
many authors (e.g., Pearce, 1982), the compositional dif-
ferences between magma types depend on different source
characteristics that are associated, in turn, to distinct
tectono-magmatic settings of formation. We will therefore
focus our discussion on the tectonic setting of formation of
the four distinct lava groups identified in the previous
chapter.
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Table 1 - Representative major and trace element analyses of volcanic rocks from the Izmir-Ankara Mélange. 

bas- basalt; Fe-bas- ferrobasalt; tra and- trachyandesite; tra bas- trachybasalt; al-; alkaline-type; trans- transitional-type; subalk- subalkaline-type; OIB- ocean
island basalt; P-MORB- plume-type mid-ocean ridge basalt; E-MORB- enriched-type mid-ocean ridge basalt; N-MORB- normal-type mid-ocean ridge basalt;
E- Early; M- Middle; L- Late; Jr- Jurassic; Cr- Cretaceous; MLF- massive lava flow; n.d.- not detected; - not analyzed. Mg# = 100xMg/(Mg+Fe2+). Fe2O3 =
0.15xFeO. Detection limits (major oxides = wt%; trace elements = ppm) and accuracy (mean absolute relative %), evaluated using results for international
standard rocks, duplicate runs of several samples, and the blind standards included in the sample set are also reported.
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Some discrimination diagrams are illustrated in Fig. 7.
When used independently, these diagrams show slightly dif-
ferent results. However, when combined they provide a
powerful tool for interpreting the tectonic setting of forma-
tion of the studied rocks. Group 1 and Group 2 rocks plot in
the fields for N-MORB and E-MORB, respectively in both
Fig. 7a (Meschede, 1986) and Fig. 7b (Cabanis and Lécolle,
1989), whereas in Fig. 7c (Shervais, 1982) they collectively
plot in the field for MORB. Group 4 rocks form a clearly
defined set of within-plate alkaline basalts in all diagrams.
Group 3 basalts plot in the fields for OIB in Fig. 7a, b,
whereas they plot in the field for MORB in Fig. 7c.
Nonetheless, in all these diagrams, this rock group forms a
consistent field, which is separate from the other rocks
groups. Fig. 7b has the highest potential in defining rocks
ranging from N-MORB to OIB compositions. 

The six samples of Group 3, despite their high Nb con-

tents similar to those of alkaline OIBs, have Ti and V con-
tents similar to those of MORBs. These geochemical fea-
tures, coupled with the general geochemistry of these rocks,
which is transitional between E-MORBs and OIBs suggest a
P-MORB affinity for Group 3. In summary, the four differ-
ent groups of volcanic rocks from the Izmir-Ankara
Mélange show different geochemical affinities; precisely:
N-MORB (Group 1); E-MORB (Group 2), P-MORB
(Group 3), and OIB (Group 4). 

Some highly incompatible element ratios (e.g., Zr/Nb,
Ce/Y, Zr/Y, Nb/Y) are little affected by fractional crystal-
lization of predominantly olivine + clinopyroxene + plagio-
clase. Therefore, even with significant amounts of fractiona-
tion, they are believed to represent the elemental ratios in the
source (e.g., Allègre and Minster, 1978). The different rock
groups can therefore be characterized using ratios of highly
incompatible elements, such as Ce/Y and Nb/Y (Fig. 8). 
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Table 1 (continued)
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Fig. 5 - Variation diagrams for some representative major and trace elements. MORB (mid-ocean ridge basalts), VAB (volcanic arc basalts) and
WPB (within plate basalts) compositional fields and fractionation vectors are from Pearce (1982). pl- plagioclase; ol- olivine; ap- apatite; cpx-
clinopyroxene; opx- orthopyroxene; mt- magnetite. Mg# = 100xMg/(Mg + Fe2+). Inferred fractionation trends for the different rock-groups are
also shown. 
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In this figure is apparent how the different rock groups form
distinct clusters. Both Ce/Y and Nb/Y ratios increase from
N-MORBs to E-MORBs, P-MORBs, and OIBs. These ra-
tios, as well as the distinct normalized multi-element and
REE patterns (Fig. 6) suggest that the different Groups of
volcanic rocks from the Izmir-Ankara Mélange most likely
originated from chemically distinct mantle sources. In N-
MORBs, Ce/Y and Nb/Y ratios are low and consistent with a
depleted mantle source, whereas, increasing elemental ratios
in the other rock groups reflect progressive enrichment of the
mantle source from E-MORBs to P-MORBs and OIBs.

The co-variation of Zr/Y vs. Zr in Izmir-Ankara Mélange
basalts (Fig. 9) is then used for evaluating the depleted vs.
enriched nature of the possible mantle sources of the differ-
ent rock groups. N-MORBs are compatible with composi-
tions of melts generated by partial melting of a depleted
MORB mantle source (DMM, Workman and Hart, 2005). In
contrast, OIBs are compatible with partial melting of en-
riched-type mantle sources (EM). E-MORBs may have de-
rived from a mantle source slightly enriched with respect to a
DMM source, whereas P-MORBs are compatible with melts
generated from a mantle source significantly enriched, com-
pared to DMM. Similar associations of N-, E-, P-MORBs
and OIBs are widespread in the eastern Neo-Tethys ophio-
lites, as they are found in many ophiolitic complexes from
the Albanides-Hellenides (Photiades et al., 2003; Bortolotti
et al., 2004; 2006; 2008; Saccani and Photiades, 2005; Sac-
cani et al., 2008; Tashko et al., 2009; Chiari et al., 2012),
Turkey (Tankut et al., 1998; Yaliniz et al., 2000a; Rojay et
al., 2001; Gökten and Floyd, 2007; Aldanmaz et al., 2008;
Dangerfield et al., 2011), Iran (Arvin and Robinson, 1994;
Allahyari et al., 2010; Saccani et al., 2010; 2013a) and Oman
(Lapierre et al., 2004; Chauvet et al., 2011). Moreover, simi-
lar rock associations also characterize the Paleo-Tethys ophi-
olites in Iran (Saccani et al., 2013b). These associations of
depleted and variably enriched rocks represent volcanic
products erupted either in oceanic settings or in continental
rift settings. They are interpreted as the result of partial melt-
ing of a MORB-type asthenospheric source, locally enriched
in HFSE (high field strength element) and LREE (light rare
earth elements) by an OIB-type component (plume-type
component). The co-variation of Zr/Y and Zr/Nb in the
Izmir-Ankara Mélange basalts (Fig. 10) is then used to quali-
tatively depict the influence of a plume-type component on
MORB compositions. From Fig. 10 it is evident that the data
conform extremely well to the mixing curve calculated using
the OIB and N-MORB end-members. Such mixing relation-
ships are consistent with either magma mixing or source re-
gion mixing. The composition of Group 4 alkaline rocks is
consistent with a genesis from an OIB-type mantle source. 

In contrast, sample TU10.49b of Group 1 N-MORB from
Section 8 has elemental ratios consistent with a genesis
from a pure DMM source. The slight shifting of Group 1
sample TU10.49a from Section 8 towards comparatively
more enriched compositions (Fig. 10) is likely due to the
slightly fractionated composition of this sample (SiO2 =
53.76 wt%). Other N-MORBs from Section 5 overlap the
compositional field for E-MORB, therefore it cannot be ex-
cluded that these rocks may have been affected by a little
OIB-type compositional influence. However, the incompati-
ble element general composition (Fig. 6a) indicates that
such an eventual OIB-type influence was negligible. In con-
trast, E- and P-MORBs have elemental ratios reflecting
variable interactions between DMM- and OIB-type sources.

Age constrAints

The ages obtained for the studied radiolarian assem-
blages are mainly Early Cretaceous, with one finding of
Late Triassic and three of Middle-Late Jurassic. These ages
are in agreement with the radiolarians (Bragin and Tekin,
1996; Tekin, 1999; Celik, 2010; Uner, 2010; Tekin et al.,
2012) and foraminifera (Boccaletti et al., 1966; Bortolotti
and Sagri, 1968; Yaliniz et al., 2000b; Rojay et al., 2001)
data obtained from different parts of the IAESB.
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Fig. 6 - N-MORB normalized incompatible element patterns for volcanic
rocks from the Izmir-Ankara Mélange. Normalizing values and composi-
tions of enriched mid-ocean ridge basalt (E-MORB), and ocean-island
basalt (OIB) are from Sun and McDonough (1989). 
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The age ranges from the published biostratigraphical data
indicate gaps in Early Jurassic and late Early Cretaceous (see
Göncüoglu et al., 2010). Moreover, Late Triassic and Middle
Jurassic findings were restricted to a limited number of sam-
ples. This scarcity of biostratigraphical data has even been
used by some authors (e.g., Rojay, 2013) for denying a pre-
Middle Jurassic spreading phase within the Izmir-Ankara
Ocean. The new radiolarian findings of this study provide
additional evidence on Late Triassic (late Norian), Middle-
Late Jurassic and late Early Cretaceous pelagic deposition
associated with basaltic volcanism in the oceanic basin. 

remArks And conclusions

One of the crucial points in the history of the Izmir-
Ankara oceanic branch regards its opening age. The earliest

suggestion, from Görür et al. (1983), dominated the geody-
namic models and still has some followers (e.g., Rojay,
2013). Görür et al. (1983), postulated that this oceanic
branch opened not earlier then late Early Liassic. 

It is noteworthy that the pelagic sediments (Bragin and
Tekin, 1996), collected in cherty blocks of the mélange,
gave a late Norian age (Late Triassic). Moreover, a cherty
bed intercalated in the pelagic limestones and associated to
the E-MORB basalts (Tekin et al., 2002; Göncüoglu et al.,
2010) indicated an early late Carnian age (Late Triassic).
These data could suggest that the oceanization process of
the Izmir-Ankara Ocean was active from the Late Triassic.

The new Late Triassic radiolarian age (Section 6: late
Norian) obtained in this study is from Group 4 basaltic
rocks with OIB character. Their significant HREE fraction-
ation may indicate an enriched source and may suggest the
involvement of plume-type geochemical components. 
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Fig. 7 - a) Zr/4-Y-2Nb (Meschede, 1986); b) La/10-Nb/8-Y/15 (Cabanis and Lécolle, 1989); c) V vs. Ti/1000 (Shervais, 1982) discrimina-
tion diagrams for volcanic rocks from the Izmir-Ankara Mélange. Fields in Fig. 7a: A- within-plate alkali basalts; B- within-plate alkali
basalts and within-plate tholeiites; C- enriched mid-ocean ridge basalts; D- normal mid-ocean ridge basalts; E- within-plate tholeiites and
volcanic-arc basalts. Fields in Fig.7b: 1A- calc-alkaline basalts; 1B- overlapping of 1A and 1B; 1C- volcanic arc tholeiites; 2A- continen-
tal basalts; 2B- backarc basalts; 3A- within-plate alkali basalts; 3B and 3C- enriched mid-ocean ridge basalts (3B more enriched than 3C);
3D- normal mid-ocean ridge basalts.
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In previous studies Tekin et al. (2002) and Göncüoglu et al.
(2010) suggested that the Late Triassic volcanism points to
an initial stage of oceanic crust formation by continental
rifting with or without the involvement of a mantle plume. 

The recent finding supports the deeper mantle origin but
favours a limited lithospheric extension. However, the ab-
sence of lower crustal contamination constraints their gener-
ation during the initial opening and suggests a more ad-
vanced phase. 

In the present study the E-MORB type rocks were found
in two sections of Cretaceous age (Section 4: middle late
Barremian-early early Aptian and Section 7: Valanginian to
middle Aptian-early Albian).

The oldest N-MORB lavas from the western IAESB
were previously dated as Middle to Late Jurassic (e.g.,
Göncüoglu et al., 2006). This datum is confirmed by our
finding of Late Jurassic volcanic rocks in the central IAESB
(Section 5: early-early late Tithonian) and demonstrates, to-
gether with Cretaceous ages that the ocean spreading was in
progress during Mid-Late Mesozoic times. Futhermore our
other new findings partially fill the gap during late Early
Cretaceous (see Göncüoglu et al., 2010). In fact the radiolar-
ian cherts associated to the N-MORB of Section 8 indicated
a late Valanginian-early Barremian age.

Yet, no Early Jurassic basalts were found in the oceanic
assemblages of this Neotethyan oceanic branch. Hence, the
development of IAESB during the Early Jurassic remains a
critical question. 

OIB type volcanic rocks are common in the IAESB. In the
present study, OIB-type rocks of Late Jurassic (Section 3:
middle-late Oxfordian to late Kimmeridgian-early Tithonian)
and Early Cretaceous ages (Section 1: late Valanginian to late

Hauterivian) are interpreted as derived from partial melting of
plume-type enriched mantle source(s). Our data do not allow
to discriminate if the plume-type enriched mantle source was
associated to mantle plume activity or if this enriched geo-
chemical feature was inherited from previous mantle plume
activity in the same area. However, lacking any direct evi-
dence supporting the existence of mantle plume activity, we
favour the hypothesis that the enriched nature of the mantle
source(s) was likely inherited from a previous stage.

This finding is in good accordance with the previous data
from the western IAESB (e.g., Göncüoglu et al., 2010) and
from the Neotethyan suture belts in the Eastern Mediter-
ranean (e.g., Robertson, 2002; Bortolotti and Principi,
2005). 

In the present work we document, the occurrence of
OIB-type rocks of late Norian age (Section 6) and of rocks
showing different geochemical affinities (N-, E-, P-MORBs
and OIB) generated in the same time span (Middle-Late
Jurassic - Early Cretaceous). As shown in the previous
chapters, N-MORBs are compatible with composition of
melts generated by partial melting of a depleted MORB
mantle source. In contrast, OIBs are compatible with partial
melting of an enriched-type mantle source. E-MORBs may
have derived from mantle source slightly enriched with re-
spect to a DMM source, whereas P-MORBs (Section 9: not
dated and Section 2: early-middle Bajocian to late Bathon-
ian-early Callovian age) are compatible with melts generat-
ed from a mantle source significantly enriched, compared to
DMM. 

Therefore, we can postulate that different mantle
sources existed and interacted from Middle Jurassic to
Early Cretaceous. Partial melting of an OIB-type enriched
source led to the production of the alkaline basalts, where-
as partial melting of a DMM heterogeneously modified by
OIB-type components produced both P- and E-MORBs. In
contrast, partial melting of a pure DMM led to the produc-

Fig. 8 - Ce/Y vs. Nb/Y diagram for volcanic rocks from the Izmir-Ankara
Mélange. The compositions of normal mid-ocean ridge basalt (N-MORB),
enriched mid-ocean ridge basalt (E-MORB), and ocean-island basalt (OIB)
are from Sun and McDonough (1989). The compositional variations for N-
MORBs, E-MORBs, P-MORBs (plume-type MORB) and alkaline OIB
from the Albanian (Bortolotti et al., 2004, 2006; Tashko et al., 2009), Hel-
lenides (Photiades et al., 2003; Saccani et al., 2008; Saccani and Photiades,
2005; Bortolotti et al., 2008; Chiari et al., 2012), Turkish (Tankut et al.,
1998), Iranian (Arvin and Robinson, 1994; Saccani et al., 2010, 2013a, b),
and Oman (Lapierre et al., 2004; Chauvet et al., 2011) ophiolites are
shown for comparison. Note that literature data reported for comparison re-
fer to ophiolitic units where the different rock-types listed above crop out
in association.

Fig. 9 - Zr/Y vs. Zr diagram for volcanic rocks from the Izmir-Ankara
Mélange (modified from Pearce and Norry, 1979). Possible fractionation
trends for the subalkaline, transitional, and alkaline rocks are indicated by
arrows. DMM- depleted MORB mantle; PM- primitive mantle; EM:-en-
riched mantle; OS- open-system fractionation; CS- closed-system fraction-
ation; MORB- mid-ocean ridge basalt; VAB- volcanic arc basalt; WPB-
within-plate basalt.

03Chiari 157 colore_Layout 1  02/01/14  10:08  Pagina 168



tion of N-MORBs (Section 8: late Valanginian-early Bar-
remian age). Furthermore, other N-MORBs (Section 5:
early-early late Tithonian) may have a light OIB-type
compositional influence, but the incompatible element
general composition indicates that such an OIB-type influ-
ence was negligible. 

Some of the late Early Cretaceous OIB’s found in the
central IEASB overlap temporally with the E-MORB’s.
This may indicate a second period of enriched mantle that
could be generated by a number of different tectonic
events including lithospheric extension, slab break-of, slab
roll-back etc. Previous data on the earliest ages related to
supra-subduction type volcanism and formation of meta-
morphic sole indicated early Late Cretaceous (e.g., Üner
2010), therefore the intra-oceanic decoupling within the
Izmir-Ankara Ocean was considered as pre-Late Creta-
ceous. This age could not be verified in this study, since in
contrast to the western part of the IAESB, none of the
basalt samples collected from the central part yielded
supra-subduction characteristics. This is also in contradic-
tion with respect to the very recent finding of early Middle
Jurassic (Celik et al., 2011) metamorphic sole in the sam-
pled area. 
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Plate 1 - (scale bar 50µm) 1) Ayrtonius elisabethae Sugiyama, TU10.42; 2) Betraccium deweveri Pessagno and Blome,
TU10.42; 3) Betraccium deweveri Pessagno and Blome, TU10.42; 4) Braginella rudis (Bragin), TU10.42; 5) Tetraporo-
brachia sp. A sensu Carter (1993), TU10.42; 6) Archaeodictyomitra sp. cf. A. lacrimula (Foreman), TU10.31; 7) Aurisatur-
nalis carinatus perforatus Dumitrica and Dumitrica Jud, TU10.31; 8) Aurisaturnalis variabilis variabilis (Squinabol), TU10.4;
9) Cecrops septemporatus (Parona), TU10.47; 10) Cinguloturris cylindra Kemkin & Rudenko, TU10.36; 11) Cryptamphorella
clivosa (Aliev), TU10.45; 12) Eucyrtidiellum pyramis (Aita), TU10.36; 13) Fultacapsa sphaerica (Ozvoldova), TU10.28; 14)
Hemicryptocapsa capita Tan, TU10.4; 15) Holocryptocanium sp. cf. H. barbui Dumitrica, TU10.45; 16) Loopus primitivus
(Matsuoka and Yao), TU10.36; 17) Podocapsa amphitreptera Foreman, TU10.28; 18) Praeconosphaera sphaeroconus (Rüst),
TU10.45; 19) Ristola cretacea (Baumgartner), TU10.36; 20) Stichomitra (?) takanoensis Aita, TU10.12.
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