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ABSTRACT

The Tunceli Ophiolite, which represents the eastern part of the Izmir-Ankara-Erzincan Suture Belt (IAESB), hosts several chromite mines. The petrologi-
cal characteristics of these deposits and their host rocks were investigated here for the first time. This ophiolite includes serpentinized peridotites, harzbur-
gites, dunites, gabbros, sheeted dykes, pillow lavas and mudstones. The chromite occurrences are hosted in the mantle peridotites. The spinel group minerals
in the ore and in ultramafic samples were sampled in seven different chromite mines (Yildirim, Aksu, Hasangazi, Atilla, Eskigedik, Isikvuran and Oymadal).
The chromitite spinels display podiform characteristics. The Cr# = (0.39-0.89) and Mg# = values (0.43-0.74 ) of these spinel group minerals mainly corre-
spond to magnesiochromite and chromite compositions. The silicate assemblage of the cpx-poor harzburgites include Mg-rich olivine (Fo,,), enstatite and
diopside. The occurrence of Ti-enriched secondary clinopyroxenes likely reflect refertilization processes which may have originated by interaction between
Ti-rich melts and highly depleted peridotites. The average Cr,05 (15.46 %wt) and ZPGE (92.10 pbb) contents of the chromitites from the Tunceli ophiolite
are lower than those of other chromitite-bearing ophiolites in Turkey. The consistent geochemical and mineral chemistry data from the mantle peridotites and
chromitites within the Tunceli Ophiolite suggest formation in an intra-oceanic back-arc basin which may have been active during the closure of northern

branch of the Neotethyan ocean.

INTRODUCTION

Petrological features of the mantle peridotites and
chromitites provide significant informations to unravel man-
tle sources and geodynamic evolution of the oceanic lithos-
phere (Zhou and Robinson, 1997; Pearce et al., 2000;
Barnes and Roader, 2001; Zaccarini et al., 2005; 2011;
Ghazi et al., 2011; Garuti et al., 2012; Montanini et al.,
2012; Saccani et al., 2013; Saccani and Tassinari, 2015;
Sanfilippo et al., 2015). Moreover, chromite deposits are
economically major source of chromium and platinum
group elements (PGEs, Uysal et al., 2007). In Anatolia,
mantle bodies including chromite deposits have been mostly
studied in terms of their petrological and economic charac-
teristics (e.g., Akbulut et al., 2010; Ucurum et al., 2000;
Uysal et al., 2005; 2007; 2009).

Anatolia was formed by assemblage of several terranes
or continental micro-plates during the closure of the
Neotethyan oceanic branches (e.g., Sengor and Yilmaz,
1981; Gonciioglu et al. 1997, 2006a; Aldanmaz et al., 2008;
Robertson et al., 2013). The Izmir-Ankara-Erzincan Suture
Belt IAESB), which stretches from the Aegean Sea to the
Lesser Caucasus, is located between the Anatolide-Tauride
Platform (ATP) in the south and the Sakarya Composite
Terrane (SCT) in the north (Gonciioglu et al., 2000). This
suture belt includes remnants of the Northern Neotethys
(Fig. 1a) and comprises ophiolitic sheets and ophiolite-bear-
ing mélanges. They have been derived from a complex sub-
duction-accretion system during the closure of the
Neotethyan ocean (Sengor and Yilmaz, 1981; Okay and
Sahintiirk, 1997; Aldanmaz et al., 2008).

The ages of the ophiolites range from Late Jurassic to
Early Cretaceous (Dilek and Thy, 2006; Topuz et al., 2013),
whereas formation of the mélange was assigned to Late

Cretaceous (e.g., Yilmaz et al., 1997; Okay et al., 2006;
Parlak et al., 2012; Robertson et al., 2013). The geochemi-
cal characteristics of the ophiolites suggest different tecton-
ic setting such as mid-ocean ridge, oceanic island, island
arc and back-arc basin (e.g., Yalimiz et al., 2000; Toksoy-
Koksal et al., 2001; 2009; Gonciioglu et al., 2006a; 2006b;
Aldanmaz et al., 2008; Parlak et al., 2012). Their emplace-
ment onto the Tauride-Anatolide margin started in the
Maastrichtian, and lasted until Early Eocene (Sengor and
Yilmaz, 1981; Yilmaz et al., 1997; Floyd et al., 2000;
Gonciioglu et al., 2000).

The Izmir-Ankara (Floyd, 1993; Onen and Hall, 1993;
Yaliniz et al., 2000; Floyd et al., 2000; Gonciioglu et al.,
2000; Toksoy-Koksal et al., 2001; 2009; Onen, 2003:
Gonciioglu et al., 2006b; Aldanmaz et al., 2008; Bortolotti
et al., 2013) and Ankara-Erzincan ($engor and Yilmaz,
1981; Okay and Sahintiirk, 1997; Yilmaz et al., 1997; Dilek
and Thy, 2006; Rice et al., 2006; Eyiiboglu et al., 2007; Ce-
lik et al., 2011; Parlak et al., 2012; Topuz et al., 2013;
Robertson et al., 2013) parts of this suture belt have been
extensively investigated. However, the ophiolite from the
Tunceli region is the least known member of the TAESB
(Cimen et al., 2014; Oztiifekgi-@nal etal.,2014).

Most papers on IAESB have been focused on the petro-
logical characteristics of the volcanic rocks from the pre-
served ophiolitic sequences and mélanges. Moreover, the
limited petrological studies on the mantle peridotites and
chromite deposits in Anatolia (e.g., Ucurum et al., 2000;
Ucurum and Koptagel, 2006; Uysal et al., 2012; 2015) do
not include any data related to the Tunceli ophiolite. In other
words, there is no published petrological data available on
the chromite deposits in the Tunceli province where these
ophiolitic units crop out. In this study, we present the first
petrological data including whole-rock, mineral chemistry,



and PGE geochemistry of the chromitites and mantle peri-
dotites within the Tunceli Ophiolite. We thus aim to provide
the first insights on the petrology and geodynamic evolution
of this ophiolite during the closure of the northern branch of
the Neotethyan Ocean.

GEOLOGICAL FRAMEWORK

The tectonic setting of the Anatolia is characterized by
the east-west trending IAESB that is located between the
SCT and ATP. The SCT is thrust onto the IAESB that, in
turn, occurs in tne north of the ATP (Gonciioglu, 2010). The
SCT and ATP are representative of two continental mi-
croplates, both detached at different times from the northern
edge of the Gondwana plate. The IAESB bears fragments of
the the northern branch of Neotethyan basin, i.e. the oceanic
domain located between the SCT and ATP continental mar-
gins. The Tunceli ophiolite, cropping out in the areas of
Ovacik, Piiliimiir and Mazgirt, is located in the eastern part
of the IAESB (Fig. 1a, b).

According to the geology report of the study area by the
MTA (Mineral Research and Exploration General Direc-
torate) (2008), the ATP consists of Late Paleozoic meta-
morphic rocks (schists, marbles, meta-clastics, meta-basics)
unconformably covered by the Middle Triassic to Creta-
ceous platform limestones. The IAESB is, in turn, repre-
sented by the Tunceli Ophiolite here consiting of the Late
Cretaceous serpentinized mantle rocks. The relationships
between the ATP and IAESB are sealed by the Eocene sed-
imentary and volcanics rocks topped by Oligo-Miocene
volcanics with interlayered pyroclastic and lacustrine sedi-
ments (Fig. 1b). Whereas in the southern part of the study
area the Tunceli Ophiolite directly overlains the ATP Pale-
ozoic basement, in the north the Tunceli Ophiolite are
thrust onto the Middle Triassic to Cretaceous platform
limestones (Fig. 1b).

The Tunceli Ophiolite consists of serpentinized mantle
peridotites, gabbros, sheeted dykes, pillow lavas and mud-
stones. The mantle peridotites mostly consist of harburzgites
showing a transition to a level of dunites and chromitites.
Some pyroxenite dykes were identified during the field sur-
vey. The mantle peridotites are completely serpentinized
and intensively affected by brittle deformation leading to a
pervasive cataclastic textures.

The chromitites are found as podiform-type in the highly
serpentinized band located between harzburgites and
dunites. The ore bodies are generally observed as irregular,
isolated lenses and small batches. Most of them are massive
and disseminated, whereas some minor bodies show a lay-
ered texture with nodular shape. The gangue of the deposits
is essentially made up of serpentine minerals. The relict
olivine crystals found at the center of the gangue minerals
indicates that the ore deposits were originated inside the
dunites. In spite of the intense serpentinization of the
dunites, the chromitites are remarkably fractured but not af-
fected by alteration.

ANALYTICAL METHODS

The ore and wall rock samples were collected from vari-
ous locations within the chromite deposits (Fig. 1b). Repre-
sentative ten ore and nine wall rock samples were selected
for mineralogical and geochemical analyses. Major and

trace elements of whole-rocks were analyzed by using an
ICP-OES (ICP optical emission spectrometry) and ICP-MS
(ICP mass spectrometry), respectively, at the Acme Analyti-
cal Laboratories (Canada). Total abundances of the major
oxides and several minor elements were analysed by ICP-
OES following a lithium metaborate/tetraborate fusion and
dilute nitric digestion. Loss on ignition (LOI) was deter-
mined by weight difference after ignition at 1000°C. Some
duplicated samples were analyzed in order to confirm the
accuracy of the analyses. The concentrations of platinum
group elements (PGE) were determined by using the nickel-
sulfide fire assay pre-concentration followed by irradiation
and analysis on the sulfide precipitate at the Maxxam Ana-
lytics International Corporation, Ontario, Canada. Detection
limits were 10 ppb for Pt, Pd and Ru, 1 ppb for Rh and Os,
0.2 ppb for Ir, and 0.5 ppb for Au.

Mineral analyses by electron microprobe (EMP) were
carried out on six ultramafic rock samples (harzburgite,
dunite and pyroxenite) and seven chromitite samples. The
samples affected by minor post-magmatic alteration were
selected for analysis. However, some chromitites samples
still have alteration evidence at grain boundaries and along
fractures of the spinel group minerals. The PGMs,
chromites and silicates were analyzed by electron micro-
probe using a Superprobe Jeol JXA 8200 at the Eugen F.
Stumpfl Laboratory installed at the University of Leoben,
Austria, using both ED and WD systems. Back scattered
electron (BSE) images were obtained using the same instru-
ment. During the analyses of chromites and silicates, the
electron microprobe was operated in the WDS mode, with
15 kV of accelerating voltage and 10 nA of beam current.
The analysis of Na, Mg, K, Al, Si, Ca, Ti, V, Cr, Zn, Mn,
Fe and Ni were obtained using the Ka lines, and were cali-
brated on natural chromite, rhodhonite, ilmenite, albite,
pentlandite, wollastonite, kaersutite, sphalerite and metallic
vanadium. The following analyzing crystals were used:
TAP for Na, Mg, Al, PETJ for K, Si, Ca and LIFH for Ti,
V, Cr, Zn, Mn, Fe and Ni. The peak and backgrounds
counting times were 20 and 10 seconds, respectively for the
major elements. The PGMs were located by scanning pol-
ished sections under a reflected light microscope at 250-
800 magnification. The PGMs with a size less than 5 mi-
crons were only qualitatively analyzed by EDS. The larger
PGM swere quantitatively analyzed in the WDS mode, at
20 kV accelerating voltage and 10 nA beam current, and
beam diameter of about 1 micron. The peak and back-
grounds counting times were 15 and 5 seconds, respective-
ly. The Ka lines were used for S, As, Fe and Ni; La for Ir,
Ru, Rh, Pd and Pt, and Ma. for Os. The reference materials
were pure metals for the six PGE (Ru, Rh, Pd, Os, Ir, Pt),
synthetic NiS, natural pyrite and niccolite for Ni, Fe S and
As. The following diffracting crystals were selected: PETJ
for S; PETH for Ru, Os, Rh; LIFH for Fe, Ni, Ir, Pt and
TAP for As. Automatic corrections were performed for in-
terferences involving Ru-Rh and Rh-Pd. 400 point analyses
were carried out on spinel group minerals, 210 of which
was from the chromitite samples while 190 points were
from the host rock samples. Silicate minerals were analysed
totally from 234 points, 40 of which were inclusions in
spinels of chromitite and 194 main constituents of the peri-
dotites. Moreover, the platinum group minerals (PGMs)
were identified and analysed in two of the chromitite sam-
ples. The representative results of the EMP analysis for the
minerals from both chromitite and tectonite samples are
presented in Tables 1-4.



Fig. 1 - (a) Location of the study area in the tectonic sketch map of Anatolia (modified from Gonciiolu, 2010), (b) Geological map of the study area (modified
from MTA, 2008). IV=Ikvurak Mine, EG=Eskigedik Mine, AT=Atilla Mine, HG= Hasangazi Mine; AK=Aksu Mine; YL=YIdrm Mine; OY=Oymadal Mine.
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RESULTS
Petrography

21 representative chromitite and 19 ultramafic wall-rock
samples, collected from various mining sites, were exam-
ined under polarized and ore microscope to determine min-
eral abundances and textural characteristics. The ultramafics
were composed of variable proportions of olivine, clinopy-
roxene and orthopyroxene with accessory of amount of
spinel. Modal mineralogy and textural features indicate that
the wall rocks are harzburgitic and dunitic mantle tectonites.
Fresh host rocks are rare. In the altered samples talc and
tremolite may occur in addition to serpentine. The spinel
group minerals of these samples are the least affected by
secondary processes.

Comparatively fresh samples of the peridotites are re-
stricted to the mines from the Hasangazi and Atilla areas.
The peridotites are mostly harzburgites with low but vari-
able abundance of clinopyroxene. The widespread serpen-
tinization mostly erased the primary textural features but
mosaic, granoblastic textures are locally preserved. Some of
the harzburgite samples have relatively high amounts of
fine-grained, interstitial clinopyroxene whose formation
may be the result of melt-rock interaction. Although prima-
ry olivine is mostly replaced by serpentine, relict crystals
were observed through the mesh-textured serpentine (Fig.
2a). The orthopyroxenes were commonly replaced by
bastite. Fine- to medium- grained (up to 1 mm) crystals of
spinel group minerals occur as inclusions in the main miner-
als or disseminated in the rocks (Fig. 2a, b). Disseminated
spinels in the harzburgites generally occur as euhedral or
elongated crystals. They are generally fractured due to vol-
ume change during serpentinization. The fractures are most-
ly filled by serpentine aggregates and, sometimes, by talc
and tremolite.

Dunite samples are made up of > 90% olivine, orthopy-
roxene < 3%, clinopyroxene < 4% and spinel < 3%. Black
spinel crystals in accessory amount are subhedral. The sam-
ples are largely serpentinized. In certain instances, the sam-
ples do not have any primary minerals due to pervasive ser-
pentinization that can reach up to 95% of the total surface
area. Talc and tremolite occur in addition to serpentine min-
erals. Serpentine and talc even fill out the fractures of the
spinel crystals that are disseminated in the samples (Fig.
2¢). Original textural features of the serpentinized dunites,
i.e., porphyroclastic texture, were almost completely re-
placed by mesh texture.

The chromitites in the study area are mainly represented
by small bodies with massive, disseminated, banded or
nodular forms. Banded chromite ore bodies display
schlieren texture, characterized by parallel layers of massive
to semi-massive chromitite alternating with serpentinized
dunite. Chromian spinel crystals, variable in size from fine-
to coarse-grained (0.2-3.1 mm), are euhedral to anhedral.
Most of the chromian spinel crystals are highly fractured
due to cataclastic deformation (Fig. 2d). Along fractures and
at rims, the crystals are darker compared to inner fresh
cores. During alteration ferrian chromite and magnetite were
formed as a consequence of Cr loss. Chromite crystals, es-
pecially in disseminated and layered forms of chromitites,
occur in the interstitial matrix of serpentine accompained by
occasional amont of talc and chlorite replacing primary
olivine and orthopyroxene. Moreover, fractures of the crys-
tals are filled out by serpentine and talc. In spinel crystals,
silicate mineral inclusions (e.g., olivine) may be observed.

In addition, PGM, awaurite and orcelite were identified in
chromian spinels of the chromitites (Fig. 2e). Surprisingly, a
small grain of platinum (about 1 um in size) was found in a
grain of pentlandite, occurring in the serpentinized peri-
dotite hosting the chromitite (Fig. 2f).

Mineralogy and Mineral Chemistry

Mantle peridotites

Olivine is the most abundant phase in the tectonites of
the Tunceli Ophiolite and representative compositions are
reported in Table 1. The analyses display very slight com-
positional differences in Fo values of dunite and hazburgite
that range between 90.7-91.5 and 91.0-91.2 mol%, respec-
tively. Additionally, NiO contents of olivines from dunite
and harzburgite are low, varying between 0.24-0.41 and
0.31-0.39 wt%, respectively. The MnO contents of olivine
in both rock types are between 0.05 and 0.21 wt%, and the
CaO content is very low, less than 0.15 wt% for all samples
(Table 1).

In most samples, diopsidic clinopyroxene (Wo,, .
45.0BNys5 950 sES, ¢ 5 5) 1s the only preserved pyroxene, while
the occurrence of relict enstatitic orthopyroxene (Wo, 4.
103ENg5 490 4FS7 511 0) 15 restricted to few harzburgite sam-
ples. Mg/(Mg+Fe?") of clinopyroxene are between 0.90-
1.00 while those of orthopyroxene vary in a narrow range
of 0.91-0.95. The AL,O; content of clinopyroxene ranges
between 0.7 and 3.0 wt%, whereas orthopyroxene display a
narrow variation from 1.4 to 1.8 (wt%). There is no compo-
sitional difference in clinopyroxene controlled by the pres-
ence of orthopyroxene. The TiO, and Na,O contents of
clinopyroxene are < 0.27 wt% and < 0.29 wt%, respective-
ly, whereas lower values (TiO, < 0.10 wt% and Na,O <
0.03 wt%) were measured for orthopyroxene. Both pyrox-
enes display overlapping compositional ranges in Cr,0,
(0.16-1.34 wt%). The secondary clinopyroxenes, reflecting
rock-melt interaction, are well distinct for higher FeO®,
TiO, and Al,O; contents than the primary clinopyroxenes
(Fig. 3).

The chromian spinels of the peridotites vary in composi-
tions from spinel (OY and AK mines) and magne-
siochromite (IV and AT mines) to chromite (EG mine)
(Table 3; Fig. 4). In other terms, the spinel and magne-
siochromite compositions with lower Cr# (39-63) and high-
er Mg# (52-65) values are related to harzburgite while
chromite composition with higher Cr# (68-77) and lower
Mg# (43-57) are associated with dunite. The most Cr-rich
spinels in the harzburgites contains low TiO, concentrations
(< 0.1 wt%), whereas chromites in the dunite samples from
the EG mine have relatively higher TiO, concentrations up
to 0.41 wt%. Mg# > 0.40 of the chromian spinels suggest
that the mineral was not chemically affected by alteration
(not shown).

Chromitites

The chromitites within the Tunceli Ophiolite are com-
posed of 47.7-66.6 wt% of Cr,0;, 4.60-19.1 wt% of Al,O;,
1.3-6.2 wt% of Fe,0;, < 0.27 wt% of TiO, (Table 4). Their
Cr# (0.63-0.89) and Mg# values (0.44-0.66) indicate mag-
nesiochromite composition for all the chromian spinels of
chromitites except for those from the OY mine (Fig. 4). The
chromian spinels from the OY mine have the lowest Mg#
values corresponding to chromite composition. The magne-
siochromite crystals from the IV chromitites show the low-
est Al,O;, TiO, and Fe,O, (wt%) concentrations (Table 4).



Fig. 2 - Microphotographs showing, (a) microstructure of a relatively preserved harzburgite, (b) serpentinized harburgite with relicts of the primary phases, (c)
serpentinized dunite with disseminated spinel crystals. Back-scattered electron images of, (d) highly fractured and brecciated chromitite. (e) awaruite (Ni-Fe
alloy) and orcelite (Ni arsenide) in chromitite samples. (f) laurite (RuS,) in chromian spinel crystals (ol- olivine, cpx- clinopyroxene, opx- orthopyroxene,
serp- serpentine, spl- spinel, awr- awaruite, orc- orcelite, Irt- laurite).

High Mg# (> 0.40) (Sobolev and Logvinova, 2005) and low in the chromitite samples comprise olivine (Fo = 96.5-97.2),
Fe**/(Fe**+Al+Cr) values for the chromian spinels indicate diopsidic clinopyroxene (Woys ¢.45 [Enyg .51 1 FS,5.54), parga-
that they are unaffected by alteration. The silicate inclusions sitic amphibole and phlogopite.
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Fig. 3 - Variation of Al,O; and TiO, (wt%) contents of clinopyroxene
againts FeO® displaying compositional difference of primary and sec-
ondary clinopyroxenes in the harzburgite samples.

Whole rock geochemistry

Highly variable loss on ignition (LOI) values were ob-
served for the mantle peridotites (2.5 16.6 wt%; Table 5).
These values are related to variable extent of hydrothermal
alteration detected during petrographic observations.
Whole-rock compositions were therefore corrected on a
volatile-free basis for the mantle peridotites. However, the
LOI values of chromitite samples are between 0.1-2.0 wt%
which reflect scarce influence of secondary processes.
Moreover, the trace elements immobile during hydrothermal
alteration processes (e.g., V, Co, Sc, Ga and Ni, Pearce and
Cann, 1973; Floyd and Winchester, 1978), were used to
minimize the effect of this alteration. Analytically, the rare
earth element concentrations are mostly below the detection
limits (Table 5).

Mantle peridotites
Major and trace element concentrations of the mantle
peridotites are given in Table 5. MgO contents vary from

Fig. 4 - Classification and compositional variation of chromian spinel from
peridotites and chromitites in terms of Cr/(Cr + Al) and Mg/(Mg + Fe?*).

32.35 to 42.86 wt%, showing variable depletion relative to
the primitive mantle (PM; 38.8 wt%, McDonough and Sun,
1995). The concentrations of other major oxides (wt%) such
as Si0,, Al,0;, CaO and Fe,O, range between 39.43-47.38;
0.12-3.86; 0.12-2.99 and 7.37-11.08, respectively. CaO and
Al,O; contents are also depleted relative to PM (CaO = 3.5
wt%; Al,0,= 4.4 wt%; McDonough and Sun, 1995).

The MgO/SiO, vs Al,0,/Si0, diagram (Fig. 5) can be
used in order to point out possible Mg loss in abyssal peri-
dotites (Snow and Dick, 1995). Niu (2004) suggests that, the
‘terrestrial array’ represents a magmatic depletion trend
from a primitive mantle (MgO/SiO, ~ 0.85; Al,0,/SiO,
~ 0.1) to highly depleted harzburgitic composition
(MgO/SiO, ~ 1.1 and Al,0,/SiO, ~ 0). The MgO/SiO, vs
Al,05/Si0, ratios of the mantle peridotites of this study vary
between 0.82-1.28 and 0.002-0.086, respectively. Most of
the samples plot below the mantle array. On the other hand,
two dunite samples (from IV and AT mines) plot above the
mantle array. While the AT mine has highest MgO/SiO,
(1.28) and lowest Al,04/Si0, (0.002) ratios, the OY mine
has lowest MgO/SiO, (0.82) and highest Al,0,/SiO, (0.086)
ratios relative to the other mantle peridotites (Fig. 5).

The variations of SiO,, Al,O5, Ca0O, Fe,0,, Sc, Ga, V, Ni
againts MgO (Fig. 6) were used to understand the possible
tectonic environment of the peridotites (Niu et al., 1997;
Parkinson and Pearce, 1998, Uysal et al., 2012). While the
samples from EG, HG, AK, YL mines mostly plot in or
close to the abyssal peridotite field, the samples from AT
and IV mines (dunites) plot in or close the Supra-Subduc-
tion Zone (SSZ) field. Overall, higher SiO,, Al,O;, CaO,
Fe,0;, Sc, Ga, V, Ni associated with lower MgO concentra-
tions are consistent with an abyssal affinity (Fig. 6).

Chromitites

Major and trace element concentrations of the chromitites
are presented in Table 5. The Cr,O; contents (12.29-17.35
wt%) are lower than those observed for other chromite de-
posits in Turkey (Giinay and Colakoglu, 2011). The samples
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Fig. 5 - MgO/SiO, vs Al,04/SiO, diagram for the mantle
peridotites (modified from Uysal et al., 2012).

Fig. 6 - Variation of oxides and trace elements againts MgO (wt%) in the mantle peridotites (abyssal and SSZ fields are from Niu et al. (1997), Parkinson and

Pearce (1998) and Uysal et al. (2012).

AT and OY, have the lowest and the highest Cr,O, concen-
trations, respectively. There is positive correlation of Fe,O,
(r: 0.80), V (1: 0.45) and Co (r: 0.50) with Cr,0, whereas
negative correlations of SiO, (r: -0.83), MgO (r: -0.78) and
Ni (1: -0.50) with Cr,0j are clearly observed (Fig. 7).

Bulk concentrations of platinum group element (PGE)
range between 52.4 and 114 ppb (ave. 92 ppb), lower than
those in other significant chromite deposits (ave. 166-280
ppb) in Turkey (Table 6, Uysal et al., 2010). Chondrite nor-
malized PGE patterns are shown in Fig. 8. All the chromitite
samples display Os-Ir-Ru (Iridium group; IPGE) enrich-

ments over Rh-Pt-Pd (Palladium group; PPGE) concentra-
tions coupled with slightly positive Ru anomaly. While the
chromitite sample from the AK mine shows the most en-
riched pattern, the sample from IV mine exhibits the least en-
riched pattern among all the deposits. Additionally, the val-
ues of Pt and Pd are under the detection limits (< 10 ppb).
The Pd/Ir ratios are mostly lower than 1 for the chromitites.
The Ir values range between 4.4-28 ppb (generally higher
than 10 ppb). Moreover, the investigated chromitites display
patterns similar to the mantle-hosted ophiolitic chromitites
worldwide (Fig. 8; Uysal et al., 2005; Donmez et al., 2014).



Fig. 7 - Variation diagrams for the chromitites.

Fig. 8 - Chrondrite normalized PGE patterns of
chromites (field of mantle-hosted ophiolitic
complexes taken from Donmez et al., 2014).
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Table 6 - PGE data of the chromitites.

RDL = Reportable Detection Limit.

DISCUSSION

Chemical variability of the mantle peridotites
and inferences on their genesis

Low Na content of clinopyroxenes is consistent with a
suboceanic mantle derivation. However, the secondary
clinopyroxenes display higher Na values than the primary
clinopyroxenes (Fig. 9a). The narrow range of Mg# and
NiO (0.24-0.41 wt%) values in the olivine are similar to
those from abyssal and fore-arc peridotites (Fig. 9b). The
variations of TiO, againts Mg# in the clinopyroxenes main-
ly correspond to transitional compositions between fore-arc
and abyssal peridotites; in particular, the higher TiO, con-
tents of secondary clinopyroxenes are more akin to those
from abyssal peridotites (Fig. 9c). The Al,O; and Mg# val-
ues of orthopyroxenes show similarities to those of forearc
peridotites (Fig. 9d). While the spinels from the clinopyrox-
ene rich peridotites mostly plot into the abyssal peridotites,
the spinels from the clinopyroxene poor peridotites plot in
the field of fore-arc peridotites (Fig. 9¢). Higher Cr# values
in spinels coupled with relatively low Mg# values in olivine
are commonly found in supra-subduction zone related peri-
dotites (Fig. 9f). In Fig. 10a, the clinopyroxenes of peri-
dotites plot in the fields of fore-arc and abyssal peridotites
which is consistent with a typical back arc basin environ-
ment. Interaction between fore-arc peridotites and Ti rich
melts (Fig. 10b) is supported by the composition of the sec-
ondary clinopyroxenes. In addition to the silicate mineral
chemistry from the peridotites, the compositions of chromi-
an spinels in the chromitites indicate a podiform type (Fig.
11a). This result is also corroborated by the presence of lau-
rite in the chromitites. The low Al,O; (< 20 wt%) and TiO,
(< 0.3 wt%) concentrations of the spinels from these
chromitites are consistent with a supra-subduction zone set-
ting (Fig. 11b).

In summary, the studied peridotites display characteris-
tics transitional between fore-arc and abyssal peridotites
(Fig. 9) which may indicate derivation from a typical back
arc basin environment (e.g., Bédard et al., 2009). Primary
clinopyroxenes with low Al,O, contents (0.73-1.87 wt%)
coexisting with Cr-rich spinels (Cr# = 39-77) testify the de-
pleted character of the peridotites. Such chemical features
are consistent with high degree of partial melting (Fig. 9e;
18-31%), characteristics of subduction-related peridotites
(Parkinson and Pearce, 1998; Pearce et al., 2000). Such high
degrees of melting may be promoted by addition of H,O-
rich fluids (Davies and Bickle, 1991; Stolper and Newman,
1994; Taylor and Martinez, 2003; Langmuir et al., 2006).

These very low proportions of primary clinopyroxene in-
dicate a strong depletion of the peridotites. Nevertheless, the
chemical composition of secondary clinopyroxenes and
TiO, enrichment of some coexisting Cr-rich spinels (TiO, up
to 0.4 wt%) are in contrast with the highly residual character
of the peridotites. These results suggest that melt extraction
was followed by enrichment processes (refertilization) in a
supra-subduction zone rather than a simple melt extraction
in a mid-ocean environment (Saka et al., 2014). In other
words, interaction between TiO, rich melts and previously
depleted peridotites may have produced TiO, enrichments in
the residual high Cr# spinels (Pearce et al., 2000; Choi et al.,
2008) and enrichments in Ti, Al and Na in the secondary
clinopyroxenes. These geochemical signatures are consistent
with a back arc basin environment (Fig. 10).

The mantle peridotites mainly plot below the mantle ar-
ray in the MgO/SiO, vs Al,0,/Si0O, diagram (Fig. 5). This is
most likely related to seafloor hydrothermal alteration
(Snow and Dick, 1995; Niu, 2004; Uysal et al., 2012). Con-
versely, two dunite samples (IV and AT) plot above the ter-
restrial mantle array, which suggest interaction with olivine
rich melts (Uysal et al., 2012) or higher degree of partial
melting in a SSZ.

Whole rock and PGE geochemistry of the chromitites:
implications on the origin

The relatively low Cr,0; values of the chromitites may
be interpreted as a result of limited melt-rock interaction in
a intra-oceanic back arc basin. Remarkably, the lithospheric
mantle is thinner in a back arc basin than a subduction zone
due to spreading. Therefore, the degree of interaction be-
tween the mantle rocks and rising melts will be lower com-
pared to a subduction zone (Zhou and Robinson, 1997).

The low PGE concentrations may be caused by lack of
sulfur saturation during the early stage of their crystalliza-
tion (Garuti and Zaccarini, 1997; Uysal et al., 2005) or by
secondary processes (weathering, hydrothermal activity,
serpentinization, metamorphism: e.g., Augé and Legendre,
1994; Prichard et al., 1986; Thalhammer et al., 1990; Zac-
carini et al., 2005). The petrographic and EPMA evidences,
showing well preservation of the PGM within the chromite
crystals, rule out modification of PGE distribution by sec-
ondary processes. Therefore, low PGE concentrations in the
chromitites could be related to primary magmatic features
closely linked to the tectonic setting. Previous studies on
chromitites have shown that Al-rich chromitites from
spreading zones are characterized by low PGE contents



Fig. 9 - Variation of, (a) Na (pfu) againts Cr (pfu) in clinopyroxene (oceanic and continental mantle division is from Konrprobst et al.,
1981), (b) NiO vs. Mg/(Mg + Fe?*) in olivine (fields showing fore-arc and abyssal peridotites and ultramafic-mafic plutons are from Bé-
dard et al., 2009 and references therein), (c) TiO, vs. Mg/(Mg + Fe?*) in clinopyroxene (fields of abyssal and fore-arc peridotites are
from Bédard et al., 2009 and references therein), (d) AL,O, vs. Mg/(Mg + Fe?*) in orthopyroxene (fields of abyssal and fore-arc peri-
dotite are from Bédard et al., 2009 and references therein), (e) Cr/(Cr + Al) vs. Mg/(Mg + Fe?*) for chromian spinels of the peridotites
(fields of abyssal and fore-arc peridotites are from Bédard et al., 2009 and references therein, and wet partial melting trend is from Hi-
rose and Kawamoto, 1995), (f) subduction related origin of the studied peridotites based on variation between Cr# of spinel and Mg# of
olivine (olivine-spinel mantle array (OSMA) and field of abyssal peridotites are from Arai, 1994, fields of pre-oceanic and subduduc-
tion peridotites are from Bonatti and Michael, 1989, pressure trends of 5 and 10 kbars are from Sobolev and Batanoba, 1995 and 15
kbar trend is from Jaques and Green, 1980).
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Fig. 10 - Variation of, (a) Cr,0; with Mg Mg/(Mg+Fe?*) in clinopyroxene (fields of abyssal and fore-arc peridotites, and back-arc basin units are from Bédard
et al., 2009 and references therein), (b) TiO, with Al,O; in clinopyroxene (fields of abyssal and fore-arc peridotites are from Hébert et al., 1990, Johnson et
al., 1990, Ishii et al., 1992).

Fig. 11 - Compositional variations of chromian spinel of the chromitites: (a) Al,O; with Cr,0; (podiform and stratiform fields are Bonavia et al., 1993), (b)
TiO, with AL O, (tectonic setting fields from Kamenetsky et al., 2001, LIP- large igneous province, OIB- ocean island basalt, MORB- mid-ocean basalt).

(e.g., Ahmed and Arai, 2003; Gervilla et al., 2005). These These chromitites can be characterized by high IPGE/PPGE

concentrations are the lowest among the other chromitite de- ratios, a typical feature of podiform chromitites (Zhou et al.,
posits in Turkey which were reported by Uysal et al. (2010). 1996). The very low Pd contents (under detection limit)/Ir
The chondrite-normalized PGE patterns display trends simi- ratios may be conceively related to a depleted mantle source

lar to those of mantle hosted ophiolitic chromitites (Fig. 8). within a back arc basin (see Garuti et al., 1997).
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Fig. 12 - Simplified geodynamic model illustrating northward subduction of northern branch of Neotethyan and tectonic setting of the Tunceli Ophiolite

(ATP- Anatolide-Tauride Platform; SCT- Sakarya Composite Terrane).

An overall approach to the geotectonic setting

There is still no consensus in relation to the formation of
podiform chromitites associated with mantle peridotites in
the literature. It is mostly accepted that these rocks were
formed in a subduction zone or in a back arc basin environ-
ment (e.g., Zhou and Robinson, 1997; Zaccarini et al.,
2011). The mantle peridotites from the Tunceli Ophiolite
display both depleted and refertilized characteristics. Refer-
tilization was likely due to interaction of Ti-rich melts with
depleted peridotites. This inference is supported by the pres-
ence of secondary clinopyroxene with high Ti content asso-
ciated with refractory spinel enriched in Ti. These results
may be caused by rising of these melts in a spreading back
arc basin. To sum up, the mantle peridotites of the Tunceli
Ophiolite exhibit the signatures of a typical back arc basin
which may have been developed in a supra-subduction zone
(Fig. 12).

CONCLUDING REMARKS

The geochemical data of the mantle peridotites and
chromitites indicate that the Tunceli Ophiolite may have
formed in an intra-oceanic back arc basin. Similar conclu-
sions have been previously reached on the basis of geo-
chemical signatures of magmatic rocks within this ophiolite
(Cimen et al., 2014). In general, the mineral chemistry re-
sults including olivine, pyroxene and spinel minerals display
the geochemical characteristic of fore-arc and abyssal peri-
dotites. Moreover, the presence of secondary clinopyrox-
enes and high-Ti spinel indicate the interaction between de-
pleted peridotites and Ti rich melt that have caused a refer-
tilization process. Overall, the consistent geochemical and
mineral chemistry data from these mantle peridotites,
chromitites and magmatic rocks within the Tunceli Ophio-
lites are consistent with origin in a intra-oceanic back-arc
basin which should have been active through closure of
northern branch of the Neotethyan ocean.
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